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{a)

FIG. 5. (a) Graphs to sixth order which contribute to
K, . (b) Graphs to sixth order which contribute to K„.

FIG. 6. The two eighth-order generalized ladder graphs
which are not generated by the crossing-symmetric
Bethe-Salpeter equations. It is easy to see that these
graphs are two-body irreducible in neither the s nor u

channels.
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3If we are dealing with "scalar electrodynamics, "
where the "photons" are indeed massless, this last
statement does not have very much meaning since the
elastic and production thresholds coincide. However,
if we are dealing with "massive scalar electrodynamics, "
they will not coincide, and elastic unitarity will indeed
be satisfied between the elastic and production thresholds.
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The analyticity of the weight function g in the Nakanishi representation is discussed under
certain assumptions and a simple inversion formula is proved. Two-particle unitarity is
formulated as an integral equation for g. A crossing-symmetric asymptotic form for g cor-
responding to Regge behavior for the amplitude is obtained. The significance of this investi-
gation for the construction of dual amplitudes is discussed.

I. INTRODUCTION

An integral representation for the scattering
amplitude was proposed by Nakanishi' as an alter-
native to the Mandelstam representation. It was
based on the general form of Feynman integrals
for perturbation-theoretic graphs. On the basis
of its construction it follows that this representa-
tion is valid to all orders in perturbation theory.
Further, unlike the Mandelstam representation,
the Nakanishi representation can be extended to
N-point functions.

The unsubtracted form of the representation for
the two-particle scattering amplitude M(s, t, u) is

1, , A(s', t')
P( y (S

.)2 I
i (1 )t ]21'

The contours are large semicircles in the upper
half-planes, where it is assumed that A(s, t) is
analytic. If A(s, t) is bounded by

~
xs+ (1 —x) t

~

5&0, whenever ~xs+(I —x)t ~&N, for some Ã, where
x is any nonnegative real number, then

" g(z'+is, x) —g(z' —te, x)
$(Zy X) = dz

1 —x z —z4m

where

M(s, t, u) =A(s, t)+A(t, u) +A(u, s),
1

A(s, t}= gxs+ (1 —x}t,x) dx,
0

1 8 Z —XS
g(z, x)=(2,„—A s, ds,

2ws) Bz 1 —x

with the same contour as above.

(1.5)



REGGE BEHAVIOR, CROSSING SYMMETRY, AND UNITARITY. . . 3769

In the present work, however, ue shall also
assume that the amPlitude satisfies an unsubtract-
ed Mandelstam representation, which enables us
to obtain variations on the Nakanishi representa-
tion and to give an explicit discussion on the an-
alyticity of the function |t}. Our main object is to
determine the high-energy Regge-pole form of
the weight function g and the condition of two-par-
ticle unitarity on it. The primary motivation for
this work is the hope that it might provide an ap-
proach to the construction of crossing-symmetric
dual models with Regge behavior with desirable
analytic features. In this respect we note the
similarity of some such recent models' to the rep-
resentation (1.2).

The arrangement of the material is as follows:
In Sec. II, assuming that the amplitude satisfies

an unsubtracted Mandelstam representation, we
write g in terms of the double-spectral function p
and discuss its domain of analyticity. In Sec. III,
we write an integral formula for p in terms of the
discontinuity D, (s, t) of A(s, t) in s, under the as-
sumptions that the amplitude satisfies a single-
variable dispersion relation in s and that D,(s, t)
vanishes as t--~. This formula for P is the main
tool in our discussions of two-particle unitarity on

P in Sec. IV and Regge asymptotic form in Sec. V.
We are able to write the unitarity condition as an
integral equation for P. The kernel H in this equa-
tion is given by an integral over a function of K,
where E is the usual function in the two-particle
unitarity integral for A. We comment in Appendix
A on the calculation of H.

In Sec. V and Appendix B, we calculate the asym-
ptotic form of g corresponding to an imposed form
of Regge behavior for the amplitude. The limits
x-+0 and I —x-+0 in g are, respectively, asso-
ciated with s and t Regge behavior for A. A cross-
ing-symmetric asymptotic form for g, simulta-
neously incorporating these limits, is also ob-
tained.

In Sec. VI we discuss the significance of our in-
vestigation for the construction of dual models.
In particular, we point out that in the asymptotic
form of g, besides crossing symmetry and Regge
behavior, one has, already built in, a generalized
notion of duality.

II. MANDELSTAM ANALYTICITY

Since it possesses a larger domain of validity,
it is not surprising that the Nakanishi representa-
tion can be derived from the Mandelstam repre-
senItation. Assuming an unsubtracted Mandelstam
representation

(2 1)

one finds, on using the Feynman identity

ab, [xa+ (1 —x)b]' '

that the function g(z, x), defined by

1 p(s, t)dsdt
[xs+ (1 —x)t z]' -'

satisfies

(2.2}

(2 3)

To arrive at representation (2.3) we have assumed
that the x and (s, t) integrations are interchange-
able.

From these equations, or those of Sec. I, one
immediately sees that crossing symmetry is
maintained if and only if

y(z, x) =tt(z, 1 —x). (2 4)

From Eq. (2.2} one can also directly compute the
domain of analyticity for g(z, x). Suppose that
p(s, t) = 0, except when

H(s, t) —= (s —4m }(t—4m ) —4m o 0.
g(z, x) is then analytic in

Z, X: Z&QX

where

u(x) = min [xs+ (1 —x)f ] . (2.5)

A simple calculation then determines u(x) to be

u(x) = 4m'+ 4m'[x(1 —x)] '" . (2.6)

F(x; s, t) = x(s —t)+ t —4m' —4m'[x(1 —x)]'",

0&x&1 (2.9)

Alternatively, suppose that i((z, x) is analytic in
the above domain and that A(s, t) is defined by Eq.
(2.3). As x varies between 0 and 1, the one-pa-
rameter family of singularity curves of the in-
tegrand, namely

xs+ (1 —x)t =4m'+ 4m'[x(1 —x)] '", (2.&)

generates an envelope which gives the singularity
curve of A(s, t). On computing the envelope to this
family one in fact finds it, as expected, to be the
curve H(s, t) =0, the correct Mandelstam boundary.
We have therefore proved the result that the ampli-
tude A(s, t) defined by (2.3) has the correct Mandel-
stam boundary if and only if g(z, x) is analytic in

((z, x): z —4m [x(1—x)] '"—4m2 & 0]. (2.8)

One notes, further, that g(xs+(1 —x)t, x) is ana-
lytic in x, xE(0, 1), for all (s, t) such that s &4m',
t &4m'. To see this, consider the function
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as a function of x at fixed s and t. This function
has a single turning point, a minimum, at $(z, x}= 2i

v(l —x}'„,$+(z& x)

1 —x
s —t&0

s —t ~0 (2.10)
where

(2.15'

where

1 4m'
1+

2 s —t
(2.11)

1s (z, x) =—(z —4m'+ [(z —4m')' —16m x(1 —x)] '").2x

(2.16)

1 " @(z', x')dz'dx'
g(z, x) =—,a'. „(z'—z}(x' —x) ' (2.12)

where the integration extends over the comple-
ment to the domain (2.8), as well as the single-
variable dispersion relation

g(xs+(I —x)t, x) is analytic in x, x C(0, 1), for all
(s, I) such that F(x; s, t)& 0. For s —t~ 0 the maxi-
mum value attainable by I' is s —4m', at x= 1,
while the maximum value when s —t & 0 is t —4m',
which is attained at x = 0. It is thus seen that gxs
+(1 —x)t, x) is an analytic function of x, 0&x&1,
when s &4m', t-4m'. The integral represen-
tation (2.3} is therefore well defined in the region
s &4m', t &4m'. Outside this region the ampli-
tude A(s, t) is obtained by analytic continuation.

The function P(z, x) may be presumed to obey the
double dispersion relation

III. THE INVERSION INTEGRAL

The inversion integral (1.3}of the Nakanishi
representation is a complex double integral which,
even in the real form (2.2) holding under condi-
tions allowing a Mandelstam representation, is not
particularly convenient for calculations involving
quite simple functions. An alternative form giving
more readily the function P(z, x) when the ampli-
tude A(s, t) is known is therefore desirable. On
the other hand, one observes that calculation of
the discontinuity D(s, t) in one of the energy vari-
ables is often a straightforward exercise, so that
one may indeed assume that a single-integral rep-
resentation for g(z, x) in terms of D(s, t) is almost
as good as a direct inversion integral. We there-
fore proceed to prove, in the following, a formula
giving P(z, x) in terms of D,(s, t) for an amplitude
A(s, t) satisfying an unsubtracted dispersion rela. —

tion in s,

1 " $(z', x)dz'
$/Zy X) =

4m
(2.13) A(s, t)= ' ' ds'

217'L ~4~2 S —S
(3.1)

The discontinuity $(z, x) of P(z, x) in z, at fixed x,
may be related to the double-spectral function p
using Eq. (2.2). One obtains

with

lim D, (s, t) = 0.
ao

(3.2)

((z, x)=-2i 1
v (1 —x}'

—[p(s, t)B(H(s, t))]
a

dSy
t=(z -xs )/(I-x )

(2.14)

where we have explicitly introduced the limit on
the region of integration implied in Eq. (2.2).
When the differentation in the integrand of Eq.
(2.14}is effected, the 5 term gives no contribu-
tion [since p(s, t) vanishes on the boundary] while
the 8 term

p(') s, 6) H s,

p"'(», y) =-(ap/8y)(x, y)

shows that g(z& x) is nonzero for z & 4m'+4m'
x[x(1 —x)]'~' and is given there by the finite inte-
gral

The formula to be proved is

P(z, x) = . ds D, (s,t)—1 "
a

2gi 1 —x .4 2 Bt f= (z xs )/ (1-x )

(3.3)
Since g is uniquely determined, given A, when

(1.2) holds, it is sufficient to assume (3.3) and de-
duce (1.2) under conditions (3.1) and (3.2). From
(3.3) we have, assuming that an interchange of the
order of integrations is allowed,

1

f(s, t) =— P(xs+(1 —x)t, x)dx
0

1 "",)' D,"'(s', t+(s —s')x/(1 —x))ds'
2»i „,~, (1 —x}'

(
"" ds' "' 8D, (s', X)

wi 42s —s BA,

where D,"'(u, v) denotes BD,(u, v)/Bv. Introduce the
variable X = t+(s —s')x/(1 —x) in effecting the inte-
gra. l over x. Then dA/dx= (s —s')/(1 —x}', and for
s —s'& 0 (that is, s& 4m2), (0, 1)-(-~, t}, giving
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1 Ds(s & t)d t A( t)
2@i „~tft2 S —S

This proves formula (3.3) under the stated condi-
tions. In particular note that we have used con-
dition (3.2).

It is clear that under similar conditions we also
have the corresponding formula with D, (s, t):

1 "" BD((s, t)
(I&z x)= . s dt

am2 BS s=[z-(1-s &t]/ s

(3.4)

For a crossing-symmetric amplitude, D, (s, t)
= D, (t, s), so that (3.3) and (3.4) again give &tt(z, x)
= ()t(z, 1 —x).

One observes that Eq. (3.3), which may be writ-

ten in the form

(1 )

bears a close similarity to Eq. (2.15) for the dis-
continuity $(z, x). In fact, Eq. (2.15) may be de-
rived by taking the discontinuity in z of the above
equation and using

DiscD, (s, t) (, = -4p(s, t)B(H(s, t}).

Formula (3.3) is the main tool in our investiga. —

tion of the asymptotic form of p corresponding to
Regge behavior for A(s, t) One .may also use (3.3)
to write the two-particle unitarity condition as an
integral equation in P, which we proceed to do.

IV. TWO-PARTICLE UNITARITY FOR P

The s-channel unitarity condition on A(s, t) may be written in the form

( ) ( )
"', )' „A(s,t')A*(s, t")B(K)

(4-1)

where

p(s} =—,[s(s —4m')] "', a(s) =4m'- s, (4.2)

and

f fi 2 f 2 f/2K(s; t, t', t") = 4, —(t'+t" +t"')+2(tt'+tt" +t't"). (4.3)

From Eq. (4.1}we have

aD, (s, t) (ft' dt "G(s; t; t', t")A(s, t')A*(s, t"),
&s) (s)

where

(4.4)

G(s; t; t', t") = -pK'" —2, +5'(K)„,ate BK
(4.5)

The dependence of p and K on the variables is as given in Eqs. (4.2) and (4.3). Substituting from Eqs. (1.2)
and (3.3) into Eq. (4.4), we obtain the following equation for &t&:

d(*, *&=, ,',f dtj dt'j dt (d"
Sm s a(s& a(s& & (& 0

8 —XS
&&6 s,';t', t" g sx'+ 1 —x' t', x')$*(sx" + 1 —x" t",x"). (4 6)

This is the two-particle unitarity condition on P. To rewrite it in a different form, introduce the variables
y' and y" by

tf ff

yf ff

a(s) ' a(s) '

and two dummy 6 integrations on the first variables of &t& and &(&s. Equation (4.6} is then transformed into
the following form:



3772 M. 0. TAHA

oc d
OO

q(z, x) = .
( )2J (

2 )2
dy'dy "dx'dx" dz'dz"

z —xsx 5(z' —sx' —a(s)(1 —x')y')5(z" —sx" —a(s)(1 —x")y")G
~ s;;a(s)y', a(s)y"

~

g(z', x')P*(z", x") .
(4 7)

It is now clear that in this equation we may explicitly integrate over all variables except the arguments of

g and P*. We thus finally obtain the two-particle unitarity equation for tc) in the form

g(z, x) =
JI H(z,' x; z', z",' x', x")g(z', x')p*(z", x")dx'dx"dz'dz", (4.8)

where the region of integration is the domain D in which H e0, with x', x"C (0, 1). The kinematical factor
8 is given by

H(z;x;z', z";x', x")= . , t, , t dy'dy"5(z' —~ ~ ~ )5(z" — ~ ~ )G(s; ~ ~ ~ ),1 f" ds
2m 1 —x 4m2 4m —s (4.9)

where the dependence of G and the 5 functions on their arguments is as given in Eq. (4.7).
When the function H has been calculated from (4.5) and (4.9), Eq. (4.8) is a direct integral equation for

The actual calculation of 8 is a rather tedious job, on which we comment in Appendix A. The analytic
properties of P imposed by Eq. (4.8) should, of course, be the same as already discussed in Sec. II, on the
basis of the Mandelstam double-spectral function.

V. REGGE ASYMPTOTIC FORM

In this section we seek to determine the form of
g(z, x) corresponding to a, Regge form for A(s, t)
Before we address ourselves to this matter, how-
ever, let us see what limit in g(z, x) corresponds
to the Regge limit. Making a change of variable
in (1.2), we write it in the form

1 s
A(s, t) =— P(A +(1 —s 'A)t, s 'X(1 —s 'X)) dP. ,

0

(5 1)

P(z, x) — . D',"(x 'X, z —X)dP. .
tax p

(5.3)

We thus see that the limit x- +0 in ((z, x) is given
by the limit s-~ in D,(s, t), i.e. , by the Regge
limit. The large-t behavior is similarly associat-
ed with the limit 1 —x- +0.

We now seek to determine the asymptotic form
of g(z, x) corresponding to a Regge amplitude. Let
us consider the amplitude given by

Thus as
~

s~ -~, at fixed t,
S

A(s, t) -— g(X + t, s 'X)dX,
0

(5.2)

D,(s, t ) =f (t)s""'.
Then

D',"= s""[a'(t)f (t) lns+f'(t)],

(5 4)

provided that the limit in s is taken in such a way
that the imposed path of integration (in general,
a contour over the complex A. plane extending from
the origin to the point at infinity) avoids the singu-
larities of ttt(z, x) as x- +0. It should be noted that
s 'X remains real on the path of integration. From
(5.2) we see that the Regge limit

~

s
~

—~, at fixed
t, is given by the asymptotic form of g(z, x) as
x- +0.

Conversely, consider the limit x-+0, at fixed z,
for g(z, x). One has

1 (g z —xs
$(zp x)

2
.
(1 )2 D s, ds

4m

1 p" („,z-X
pJ( D, x X~

1
dX,

so that as x-+0, at fixed z,

and from Eq. (5.3) we obtain

1
y(z, x) - . (x-'~}" "'

27Tsx p

x [ n'(z —X)f (z —X) ln(x 'X) +f '(z —X)]dA. ,

x.e.,

y(z, x) — F(z -X)x-"'*-"'~""-~dr, (5.5)
X p

where

F(z) = (I/2m)n'(z) f (z) . (5 6)

In Eq. (5.5) we must take z ~ 4m' so that the inte-
grand remains real throughout the range of inte-
gration.

It is our purpose now to obtain an asymptotic
form, as x-+0, for the integral
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(5.7)

where

F g eh(v, x, s) dy
0

(5.8)

In terms of the variable v =-lnx, this integral be-
comes

g(z, x) —p, (z, x) as x- +0.

Define (,(z, x) by

(5.14)

which is obtained from (5.11) by imposing cross-
ing symmetry on g.

A crossing-symmetric asymptotic form for
g(z, x) may in fact be written immediately from
an expression for g near x=O. For, suppose that

P(z, x) =g(z, 1 —x) and that

Iz(v, X, z) = n(z —X)(v+Ink) . (5.9)
q(z, x) = y,(z, x(1 —x))q, (z, x) .

In Appendix I3 we obtain the following asymptotic
form for (5.8) as v- ~, using the generalized Lap-
lace method'.

I-F(a'v) 'e" (1 —Inv/v) 'I'(a+I)

as v- ~, (5.10}

where F, o, and a' denote F(z), a(z), and a'(z).
This asymptotic behavior holds, to order I/v,
when n(z) & 0 and n'(z) & 0. Substituting in (5.5)
we obtain

Then p, (z, x) —1 as x- +0 and g, (z, x}= P, (z, 1 —x}.
Thus g,(z, x) - 1 also as 1 —x- +0. Thus

P(z, x}-g,(z, x(1 —x)} as x-+0 or 1 —x-+0.
(5.15)

From (5.11) we may therefore write the crossing-
symmetric form

P(z, x) —G(z)[x(1 —x)] '" ' [-ln(x(1 —x))]

q(z, x)-G(z)x ""-'(-lnx)- "' ln [-ln(x(1 —x))]
ln(x(1 —x))

(5.16)

ln(-lnx)x 1+ as x- -4, (5.11)
in@

where

G(z) = (1/2si)I'(n(z) + 1)f(z)[a'(z)] "'. (5.12)

we would have obtained, for g(z, x} as (1 —x)- +0,

q(z, x) -G(z)(1 —x) ' '[-ln(1 —x)]

ln(-ln(1 —x)}x 1+
ln(1 —x)

(5.12)

Equation (5.11) thus gives the asymptotic form of

g corresponding to an amplitude with asymptotic
Regge behavior, as in (5.4). It should be noted
that when the amplitude is calculated by taking $
to be given by the right-hand side of (5.11), the
resulting amplitude is not exactly the Regge am-
plitude with D,(s, t) given by (5.4), but an ampli-
tude (in fact a, much more involved function) with
asymptotic behavior such that D,(s, t) f(t) s""'-
when s- ~ at fixed t. We have explicitly checked
and confirmed this asymptotic behavior, but shall
not reproduce the calculation here. One also ob-
serves from Eq. (5.12) that the factor I'(a(t}+I} ',
usually extracted from f(t) by writing

( )
ft (t)

I'(a(t) +1}'

is canceled in G, so that G(z) is essentially given
by the Regge residue R(z).

Had we considered Regge behavior as t- ~ at
fixed s, given by

as x-+0 or (1 —x)-+0. This, of course, includes
both (5.11) and (5.13). When the asymptotic form
in (5.16) is substituted for ( in (1.2), one obtains
a crossing-symmetric amplitude with Regge be-
havior. The resulting amplitude will also possess
some desirable analytic properties, such as cor-
rect threshold cuts and nonvanishing Mandelstam
double-spectral functions. Its exact analytic struc-
ture, however, requires detailed investigation
which we have not undertaken. In Sec. VI we com-
ment on the significance for the construction of
dual models.

Vl. DUALITY

The relevance of our investigation to the con-
struction of dual models is indeed rather obvious:
starting from a Regge amplitude and following our
procedure in Sec. V, one ends up with a crossing-
symmetric amplitude with Regge behavior with
nonvanishing double-spectral functions in which
a generalized notion of duality is already incorpo-
rated. As was pointed out by Cohen-Tannoudji et
al. ,

' it is essentially the association of s and t with
x and 1 —x, respectively (called by these authors
"s-x duality" } that produces many correct analyt-
ic and unitary features in the amplitude. In fact
one may further observe that this property of the
integrand enables the amplitude to maintain a dual
structure in the usual sense. For, when a certain
behavior in s is associated with one end of the re-
gion of integration, then the corresponding behav-
ior in t is associated with the other end. In par-
ticular, both the high-energy behavior in s and the
resonance poles in t arise from the end point x=0.
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Thus, under conditions favorable for the expansion
of the integrand, the usual Regge-pole resonance
duality is maintained.

Dual amplitudes based on the Nakanishi repre-
sentation are, however, quite different from the

type of amplitude discussed by Cohen- Tannoudji
et al. ,

' which is of the form

1

A(s, t) = x " ' ' " '(1 —x) ~ " 'f(sx)f(t(1 —x))dx,
0

(6.1)

so that the integrand is not a function of xs+(1 —x)t
as in the Nakanishi representation. This ampli-
tude, however, possesses many desirable fea-
tures, including Mandelstam analyticity, and ap-
pears to be a positive improvement on the Vene-
ziano amplitude. It also, of course, presents sev-
eral difficulties. It remains to be seen whether
the use of models of the type implied by (5.16)
leads to further improvements. The dual ampli-
tude which we have recently4 suggested on the ba-
sis of the Nakanishi representation neglects the
logarithmic factors in (5.16). It now appears that
these logarithmic factors are rather important
and a dual model taking them into account is under
investigation.

Variations on the asymptotic form in (5.16) may
be obtained by using different forms for the Regge
input, for example in terms of Legendre functions.
Some analytic features of the resulting models
would in this case be different, although crossing

symmetry and Regge behavior are satisfied. Such
differences may therefore be usefully exploited.
One may also determine the asymptotic form for
P corresponding to a Regge cut and construct am-
plitudes with cut-cut or pole-cut structure. Fur-
thermore, it is possible to incorporate certain
bounds and to satisfy given fixed-angle asymptotic
behaviors without much difficulty, since the corre-
sponding restrictions on g are easily obtained.
Crossing symmetry, if lost, appears to be imme-
diately recoverable at any stage.

It thus appears that a great advantage of prospec-
tive dual models ba,sed on the Nakanishi represen-
tation would be their direct link with a general
theory which, in principle, can provide a source
for further improvements. We finally observe
that the Nakanishi representation has an N-point
generalization which could, perhaps, be used for
the construction of N-point dual amplitudes. Such
a construction may, alternatively, be sought as a
generalization of 4-point dual amplitudes obtained
from the 4-point Nakanishi representation.
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APPENDIX A: REMARKS ON THE CALCULATION OF H(z; x; z', z";x', x")

To maintain explicit symmetry in z', z" and x', x", we use the 5 functions in (4.9) to effect the integra-
tions over y' and y". This gives

where

A (x, y) = 8(x)8(l —x)8(y)8(1 —y).

(Al)

(A2)

Use of these 8 functions breaks up the integral into several pieces. Consider, for example, the first. two
9 functions in (A2), which state the inequalities

0 & z' —4m'x' —x'(s —4m') & -(1 —x')(s —4m') .
These may be written in the form

when x' & —,',

1-2x' when x'&-,'.
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Simple algebraic manipulations then show that the integral over s breaks into three parts:

bg bg rb3
ds+A. ,' ds+X,' ds,

I I J rcl 02 03

where

, '-4 '(1-x')
x,' = e(z' —4m'x') e(x' ——,'),

X' X—

Z
X,' = e(z' —4m'x') e(-,' —x'), a,' =—,, (As)

4m'(1 —x') —z'
lj. ' = e(4m'x' —z') e(—, —x'), ag=, , b3 = ~ .

Thus on using all the e functions in (A2), one obtains the following decomposition:

3

H=Q y;,I;, , (A4)

where

r 8;j
(A5)

(A8)

(A'I)

1 ds Z —XS Z —XS Z —X S

2'(1 —x) ~ ~ (s —4m') ' 1 —x ' 1 —x' ' 1 —x"~ n;.

y;) = X)A.)',

o, /
= max(aI, a,". ), P, , = min(bIr b/']. .

The double primes in (A6) and (A'I) indicate that z' and x' in (AS) are to be replaced by z" and x" to obtain

the corresponding functions. It should be noted that the form of the limits in (A'I) shows that a contribu-
tion of the form y;,I;, again deco.mposes into a number (at most four) of integrals multiplied by e functions.

We now briefly consider the general form of the integrand in (A5). Since in Eq. (4.5) the 5' term may be

trivially integrated, let us consider only the e term. This contributes to G(s; t; t', t")/(s —4m')' the term

-1/2( ~2)-5/2 , +t'+t" -2 (t'+ t" + t—"') +2(t t'+ t t" + t'I")
7r' s —4m' s —4m'

so that its contribution to the integrand in (A5) takes the form

P (s)e(P (s))
(s —4m')'Pz(s) [P4(s)]"' ' (A8)

where P„(s)is a polynomial of order n in s. The integral (A5} may therefore be expressed in terms of
elliptic integrals of the first, second, and third kinds. Thus the complete calculation of IJ is seen to be
straightforward, though rather tedious and lengthy.

APPENDIX B: ASYMPTOTIC FORM OF I AS v ~~

P(z -X)e"'" '"u.
0

h(v, X, z) = o.(z —X)(v+Inz) .

To apply the generalized Laplace method, ' consider the equation eh/3A. =0. This gives

P(z —X) =X(v+Inh},

where

p(z) = o(z)/n'(z) .

(B2)

From (Bs) we see that if, in the neighborhood of a turning point, ll. v tends to a finite value as v- ~, then
Av- p(z). On the other hand, when, in the neighborhood of a turning point, Xv-~ as v-~, then p(z —X)
must tend to infinity near that point. It is thus sufficient to assume that P(z) remains finite for all z & 4m'
to ensure that (BS) is satisfied only in the neighborhood of X =0. Further, to ensure that this neighborhood
is in the region of integration, we must restrict ourselves to values of z in (BI) such that p(z} & 0. We then
observe that
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a'a/6X'- -o.(z)/X'

~, with v- p(z)/y. Thus for z such that n(z)&0, o'(z) &0, the dominant contribution to I comes

from the neighborhood of X =0.
Define u by ~ = Pu/v. Then u - 1 is dominant and

Using the mean-value theorem,

n z-—=ez ——n'z +, n" z —0—,0&6)&1.pu pu , p'u'
„

pu

V V 2V V

Therefore,

e z —— v+ln —= v —lnv n z ——a z +a z lnPu+ vuz,Pu Pu Pu

V V V
(B6)

where

g(v, u, z) =, v+ln —a" z —6———a'(z) lnPu.p u' pu
„

pu pu

V V V V
(BS)

We now note that

F(z —Pu/v) expg(v, u, z) = F(z) [1+O(1/v)] as v- ~ .
Thus

where

F(z) II exp (v —lnv) n(z) ——o.'(z) +a(z) lnpu du =F(z)p""v ' 'e" " e""u"du,
0

(BS)

(B9)

Since a(z) &0, and, for large v, &&0, the integral in (B8) is well defined and we finally obtain

f-F(n'v) " 'e" 1 — 1'(a+1) as v-~,lnv (B10)

where F, a, and o." denote F(z), n(z), and o.'(z). This result holds to order 1/v for all z&4m' such that
o.(z) & 0, n'(z) & 0.
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